

DATA SHEET HYDRODYNAMIC SEPARATOR

Manufacturing standards: Materials and structural resistance meet the requirements of BNQ 2622-420

TECHNICAL DATA TABLE

Model	Interior diameter	Total standard height	Height between outlet invert and inner base	Floor area	
	mm	mm	mm	m²	
CENTRIBEL-915	915	2,276	1,394	0.66	
CENTRIBEL-1220	1,220	2,995	1,859	1.17	
CENTRIBEL-1525	1,525	3,693	2,323	1.83	
CENTRIBEL-1830	1,830	4,417	2,788	2.63	
CENTRIBEL-2140	2,140	5,102	3,260	3.60	
CENTRIBEL-2440	2,440	5,814	3,717	4.68	
CENTRIBEL-2700	2,700	6,389	4,113	5.73	
CENTRIBEL-3000	3,000	7,126	4,570	7.07	

 $\label{lem:decomposition} \mbox{Dimensions provided are approximate: refer to shop drawings for the project.}$

PERFORMANCE

Model	Maximum flow for 60% TSS treatment efficiency L/S	Maximum flow for 80% TSS treatment efficiency ** currently being optimized L/S		
CENTRIBEL-915	9.20	0.60		
CENTRIBEL-1220	16.36	1.07		
CENTRIBEL-1525	25.56	1.67		
CENTRIBEL-1830	36.80	2.40		
CENTRIBEL-2140	50.32	3.28		
CENTRIBEL-2440	65.42	4.27		
CENTRIBEL-2700	80.11	5.22		
CENTRIBEL-3000	98.90	6.45		

 $^{^{\}star\star}$ According to the terms specified on the CTEAU technical data sheet (see reverse side)

TECHNICAL DATA SHEET STORM WATER MANAGEMENT

Centre Specialized in Water Technology

TABLE 1 : CHARACTERISTICS OF DIFFERENT MODELS

Model	Interior diameter [®] (mm)	Floor area (m²)	Maintenance threshold The minimum height above the sediment at which the water column level must be main- tained at all times (2) (m)	Maximum value of the quality control flow ⁽³⁾ (L/s) to obtain a weighted TSS removal rate of:		Retention rate for polyethylene beads used as substitutes for oils >99 %
				60% ⁽⁴⁾	25% ⁽⁵⁾ (use limit)	Maximum flow at which this rate is achieved (6)(L/s)
01	915	0.657	0.29	9.198	N/A	N/A

- (1) Depending on the manufacturer. If a model has a different diameter than the one indicated, the flow values shown in the table should be adjusted.
- (2) Corresponds to 85% of the height of the water column tested after the scaling of the tested model. A lower height measurement means that the unit needs to be cleaned.
- (3) The quality control flow is a flow that allows treatment of 90% of precipitation events (see the fact sheet of additional information relative to BMPs and their design).
- $(4) With a loading rate of 14 L/s/m^2 based on graph 1 for a rate of 60\%. A loading rate over 14 L/s/m^2 entails a TSS removal rate of less than 60\% (see graph 1).$
- (5) With a loading rate of 35 L/s/m². The loading rate during the quality control flow cannot be above this value (see graph 1).
- (6) With a loading rate of N/A L/s/m².

GRAPH 1 : AVERAGE PERFORMANCE OF REMOVAL OF SUSPENDED MATERIAL (TSS) AT DIFFERENT FLOW

Note: This graph is based on analysis testing conducted internally, and does not represent the conclusions of the MELCC.

This fact sheet is based on a document published by the Ministère de l'Environnement et de la Lutte contre les changements climatiques. The data was provided by the CTEAU (Centre Specialized in Water Technology). Last updated: December 2021

